Частные производные и дифференциалы. Лекция n21. полный дифференциал, частные производные и дифференциалы высших порядков Чем частная производная отличается от обычной

Рассмотрим изменение функции при задании приращения только одному из ее аргументов – х i , и назовем его .

Определение 1.7. Частной производной функции по аргументу х i называется .

Обозначения: .

Таким образом, частная производная функции нескольких переменных определяется фактически как производная функции одной переменной – х i . Поэтому для нее справедливы все свойства производных, доказанные для функции одной переменной.

Замечание. При практическом вычислении частных производных пользуемся обычными правилами дифференцирования функции одной переменной, полагая аргумент, по которому ведется дифференцирование, переменным, а остальные аргументы – постоянными.

1. z = 2x ² + 3xy –12y ² + 5x – 4y +2,

2. z = x y ,

Геометрическая интерпретация частных производных функции двух переменных.

Рассмотрим уравнение поверхности z = f (x,y) и проведем плоскость х = const. Выберем на линии пересечения плоскости с поверхностью точку М (х,у) . Если задать аргументу у приращение Δу и рассмотреть точку Т на кривой с координатами (х, у+ Δу, z+ Δ y z ), то тангенс угла, образованного секущей МТ с положительным направлением оси Оу , будет равен . Переходя к пределу при , получим, что частная производная равна тангенсу угла, образованного касательной к полученной кривой в точке М с положительным направлением оси Оу. Соответственно частная производная равна тангенсу угла с осью Ох касательной к кривой, полученной в результате сечения поверхности z = f (x,y) плоскостью y = const.

Определение 2.1. Полным приращением функции u = f(x, y, z) называется

Определение 2.2. Если приращение функции u = f (x, y, z) в точке (x 0 , y 0 , z 0) можно представить в виде (2.3), (2.4), то функция называется дифференцируемой в этой точке, а выражение - главной линейной частью приращения или полным дифференциалом рассматриваемой функции.

Обозначения: du, df (x 0 , y 0 , z 0).

Так же, как в случае функции одной переменной, дифференциалами независимых переменных считаются их произвольные приращения, поэтому

Замечание 1. Итак, утверждение «функция дифференцируема» не равнозначно утверждению «функция имеет частные производные» - для дифференцируемости требуется еще и непрерывность этих производных в рассматриваемой точке.

4. Касательная плоскость и нормаль к поверхности. Геометрический смысл дифференциала.

Пусть функция z = f (x, y) является дифференцируемой в окрестности точки М (х 0 , у 0) . Тогда ее частные производные и являются угловыми коэффициентами касательных к линиям пересечения поверхности z = f (x, y) с плоскостями у = у 0 и х = х 0 , которые будут касательными и к самой поверхности z = f (x, y). Составим уравнение плоскости, проходящей через эти прямые. Направляющие векторы касательных имеют вид {1; 0; } и {0; 1; }, поэтому нормаль к плоскости можно представить в виде их векторного произведения: n = {- ,- , 1}. Следовательно, уравнение плоскости можно записать так:


где z 0 = .

Определение 4.1. Плоскость, определяемая уравнением (4.1), называется касательной плоскостью к графику функции z = f (x, y) в точке с координатами (х 0 , у 0 , z 0) .

Из формулы (2.3) для случая двух переменных следует, что приращение функции f в окрестности точки М можно представить в виде:

Следовательно, разность между аппликатами графика функции и касательной плоскости является бесконечно малой более высокого порядка, чем ρ, при ρ→ 0.

При этом дифференциал функции f имеет вид:

что соответствует приращению аппликаты касательной плоскости к графику функции . В этом состоит геометрический смысл дифференциала.

Определение 4.2. Ненулевой вектор, перпендикулярный касательной плоскости в точке М (х 0 , у 0) поверхности z = f (x, y) , называется нормалью к поверхности в этой точке.

В качестве нормали к рассматриваемой поверхности удобно принять вектор --n = { , ,-1}.

Понятие функции двух переменных

Величина z называется функцией двух независимых переменных x и y , если каждой паре допустимых значений этих величин по определенному закону соответствует одно вполне определенное значение величины z. Независимые переменные x и y называют аргументами функции.

Такая функциональная зависимость аналитически обозначается

Z = f (x,y), (1)

Значения аргументов x и y, которым соответствуют действительные значения функции z, считаются допустимыми , а множество всех допустимых пар значений x и y называют областью определения функции двух переменных.

Для функции нескольких переменных, в отличие от функции одной переменной, вводят понятия ее частных приращений по каждому из аргументов и понятие полного приращения.

Частным приращением Δ x z функции z=f (x,y) по аргументу x называется приращение, которое получает эта функция, если ее аргумент x получает приращение Δx при неизменном y :

Δ x z = f (x + Δx, y) -f (x, y), (2)

Частным приращением Δ y z функции z= f (x, y) по аргументу y называется приращение, которое получает эта функция, если ее аргумент y получает приращение Δy при неизменном x:

Δ y z= f (x, y + Δy) – f (x, y) , (3)

Полным приращением Δz функции z= f (x, y) по аргументам x и y называется приращение, которое получает функция, если оба ее аргумента получают приращения:

Δz= f (x+Δx, y+Δy) – f (x, y) , (4)

При достаточно малых приращениях Δx и Δy аргументов функции

имеет место приближенное равенство:

Δz Δ x z + Δ y z , (5)

причем оно тем точнее, чем меньше Δx и Δy .

Частные производные функции двух переменных

Частной производной функции z=f (x, y) по аргументу x в точке (x, y) называется предел отношения частного приращения Δ x z этой функции к соответствующему приращению Δx аргумента x при стремлении Δx к 0 и при условии, что этот предел существует:

, (6)

Аналогично определяют производную функции z=f (x, y) по аргументу y:

Кроме указанного обозначения, частные производные функции обозначают также , z΄ x , f΄ x (x, y); , z΄ y , f΄ y (x, y).

Основной смысл частной производной состоит в следующем: частная производная функции нескольких переменных по какому-либо из ее аргументов характеризует скорость изменения данной функции при изменении этого аргумента.



При вычислении частной производной функции нескольких переменных по какому-либо аргументу все остальные аргументы этой функции считаются постоянными.

Пример1. Найти частные производные функции

f (x, y)= x 2 + y 3

Решение . При нахождении частной производной этой функции по аргументу x аргумент y считаем постоянной величиной:

;

При нахождении частной производной по аргументу y аргумент x считаем постоянной величиной:

.

Частные и полный дифференциалы функции нескольких переменных

Частным дифференциалом функции нескольких переменных по какому -либо из ее аргументов называется произведение частной производной этой функции по данному аргументу на дифференциал этого аргумента:

d x z= , (7)

d y z= (8)

Здесь d x z и d y z -частные дифференциалы функции z= f (x, y) по аргументам x и y. При этом

dx= Δx; dy= Δy, (9)

Полным дифференциалом функции нескольких переменных называется сумма ее частных дифференциалов:



dz= d x z + d y z , (10)

Пример 2. Найдем частные и полный дифференциалы функции f (x, y)= x 2 + y 3 .

Так как частные производные этой функции найдены в примере 1, то получаем

d x z= 2xdx; d y z= 3y 2 dy;

dz= 2xdx + 3y 2 dy

Частный дифференциал функции нескольких переменных по каждому из ее аргументов является главной частью соответствующего частного приращения функции .

Вследствие этого можно записать:

Δ x z d x z, Δ y z d y z, (11)

Аналитический смысл полного дифференциала заключается в том, что полный дифференциал функции нескольких переменных представляет собой главную часть полного приращения этой функции .

Таким образом, имеет место приближенное равенство

Δz dz, (12)

На использовании формулы (12) основано применение полного дифференциала в приближенных вычислениях.

Представим приращение Δz в виде

f (x + Δx; y + Δy) – f (x, y)

а полный дифференциал в виде

Тогда получаем:

f (x + Δx, y + Δy) – f (x, y) ,

, (13)

3.Цель деятельности студентов на занятии:

Студент должен знать:

1. Определение функции двух переменных.

2. Понятие частного и полного приращения функции двух переменных.

3. Определение частной производной функции нескольких переменных.

4. Физический смысл частной производной функции нескольких переменных по какому- либо из ее аргументов.

5. Определение частного дифференциала функции нескольких переменных.

6. Определение полного дифференциала функции нескольких переменных.

7. Аналитический смысл полного дифференциала.

Студент должен уметь:

1. Находить частные и полное приращение функции двух переменных.

2. Вычислять частные производные функции нескольких переменных.

3. Находить частные и полные дифференциалы функции нескольких переменных.

4. Применять полный дифференциал функции нескольких переменных в приближенных вычислениях.

Теоретическая часть :

1. Понятие функции нескольких переменных.

2. Функция двух переменных. Частное и полное приращение функции двух переменных.

3. Частная производная функции нескольких переменных.

4. Частные дифференциалы функции нескольких переменных.

5. Полный дифференциал функции нескольких переменных.

6. Применение полного дифференциала функции нескольких переменных в приближенных вычислениях.

Практическая часть:

1.Найдите частные производные функций:

1) ; 4) ;

2) z= e ху+2 x ; 5) z= 2tg хе у;

3) z= х 2 sin 2 y; 6) .

4. Дайте определение частной производной функции по данному аргументу.

5. Что называется частным и полным дифференциалом функции двух переменных? Как они связаны между собой?

6. Перечень вопросов для проверки конечного уровня знаний:

1. Равно ли в общем случае произвольной функции нескольких переменных ее полное приращение сумме всех частных приращений?

2. В чем состоит основной смысл частной производной функции нескольких переменных по какому-либо из ее аргументов?

3. В чем состоит аналитический смысл полного дифференциала?

7.Хронокарта учебного занятия:

1. Организационный момент – 5 мин.

2. Разбор темы – 20 мин.

3.Решение примеров и задач - 40 мин.

4. Текущий контроль знаний -30 мин.

5. Подведение итогов занятия – 5 мин.

8. Перечень учебной литературы к занятию :

1. Морозов Ю.В. Основы высшей математики и статистики. М., «Медицина», 2004, §§ 4.1–4.5.

2. Павлушков И.В. и др. Основы высшей математики и математической статистики. М., «ГЭОТАР-Медиа», 2006, § 3.3.

Лекция 3 ФНП, частные производные, дифференциал

Что главное мы узнали на прошлой лекции

Мы узнали, что такое функция нескольких переменных с аргументом из евклидова пространства. Изучили, что такое предел и непрерывность для такой функции

Что мы узнаем на этой лекции

Продолжая изучение ФНП, мы изучим частные производные и дифференциалы для этих функций. Узнаем, как написать уравнение касательной плоскости и нормали к поверхности.

Частная производная, полный дифференциал ФНП. Связь дифференцируемости функции с существованием частных производных

Для функции одной вещественной переменной после изучения тем «Пределы» и «Непрерывность» (Введение в математический анализ) изучались производные и дифференциалы функции. Перейдем к рассмотрению аналогичных вопросов для функции нескольких переменных. Заметим, что если в ФНП зафиксировать все аргументы, кроме одного, то ФНП порождает функцию одного аргумента, для которой можно рассматривать приращение, дифференциал и производную. Их мы будем называть соответственно частным приращением, частным дифференциалом и частной производной. Перейдем к точным определениям.

Определение 10 . Пусть задана функция переменных где - элемент евклидова пространства и соответствующие приращения аргументов , ,…, . При величины , называются частными приращениями функция . Полное приращение функции - это величина .

Например, для функции двух переменных , где - точка на плоскости и , соответствующие приращения аргументов, частными будут приращения , . При этом величина является полным приращениями функции двух переменных .

Определение 11 . Частной производной функции переменных по переменной называется предел отношения частного приращения функции по этой переменной к приращению соответствующего аргумента , когда стремится к 0.

Запишем определение 11 в виде формулы или в развернутом виде . (2) Для функции двух переменных определение 11 запишется в виде формул , . С практической точки зрения данное определение означает, что при вычислении частной производной по одной переменной все остальные переменные фиксируются и мы рассматриваем данную функцию как функцию одной выбранной переменной. По этой переменной и берется обычная производная.



Пример 4 . Для функции , где найдите частные производные и точку, в которой обе частные производные равны 0.

Решение . Вычислим частные производные , и систему запишем в виде Решением этой системы являются две точки и .

Рассмотрим теперь, как понятие дифференциала обобщается на ФНП. Вспомним, что функция одной переменной называется дифференцируемой, если ее приращение представляется в виде , при этом величина является главной частью приращения функции и называется ее дифференциалом. Величина является функцией от , обладает тем свойством, что , т. е. является функцией, бесконечно малой по сравнению с . Функция одной переменной дифференцируема в точке тогда и только тогда, когда имеет производную в этой точке. При этом константа и равна этой производной, т. е. для дифференциала справедлива формула .

Если рассматривается частное приращение ФНП , то меняется только один из аргументов, и это частное приращение можно рассматривать как приращение функции одной переменной, т. е. работает та же теория. Следовательно, условие дифференцируемости выполнено тогда и только тогда, когда существует частная производная , и в этом случае частный дифференциал определяется формулой .

А что же такое полный дифференциал функции нескольких переменных?

Определение 12 . Функция переменных называется дифференцируемой в точке , если ее приращение представляется в виде . При этом главная часть приращения называется дифференциалом ФНП.

Итак, дифференциалом ФНП является величина . Уточним, что мы понимаем под величиной , которую мы будем называть бесконечно малой по сравнению с приращениями аргументов . Это функция, которая обладает тем свойством, что если все приращения, кроме одного , равны 0, то справедливо равенство . По сути это означает, что = = + +…+ .

А как связаны между собой условие дифференцируемости ФНП и условия существования частных производных этой функции?

Теорема 1 . Если функция переменных дифференцируема в точке , то у нее существуют частные производные по всем переменным в этой точке и при этом .

Доказательство . Равенство запишем при и в виде и раздели обе части полученного равенства на . В полученном равенстве перейдем к пределу при . В итоге мы и получим требуемой равенство . Теорема доказана.

Следствие . Дифференциал функции переменных вычисляется по формуле . (3)

В примере 4 дифференциал функции был равен . Заметим, что этот же дифференциал в точке равен . А вот если мы его вычислим в точке с приращениями , , то дифференциал будет равен . Заметим, что , точное значение заданной функции в точке равно , а вот это же значение, приближенно вычисленное с помощью 1-го дифференциала, равно . Мы видим, что, заменяя приращение функции ее дифференциалом, мы можем приближенно вычислять значения функции.

А будет ли функция нескольких переменных дифференцируема в точке, если она имеет частные производные в этой точке. В отличии от функции одной переменной ответ на этот вопрос отрицательный. Точную формулировку взаимосвязи дает следующая теорема.

Теорема 2 . Если у функции переменных в точке существуют непрерывные частные производные по всем переменным, то функция дифференцируема в этой точке.

в виде . В каждой скобке меняется только одна переменная, поэтому мы можем и там и там применить формулу конечных приращений Лагранжа. Суть этой формулы в том, что для непрерывно дифференцируемой функции одной переменной разность значений функции в двух точках равна значению производной в некоторой промежуточной точке, умноженному на расстояние между точками. Применяя эту формулу к каждой из скобок, получим . В силу непрерывности частных производных производная в точке и производная в точке отличаются от производных и в точке на величины и , стремящиеся к 0 при , стремящихся к 0. Но тогда и, очевидно, . Теорема доказана. , а координата. Проверьте, что эта точка принадлежит поверхности. Напишите уравнение касательной плоскости и уравнение нормали к поверхности в указанной точке.

Решение . Действительно, . Мы уже вычисляли в прошлой лекции дифференциал этой функции в произвольной точке, в заданной точке он равен . Следовательно, уравнение касательной плоскости запишется в виде или , а уравнение нормали - в виде .

Частными производными функции в том случае, если они существуют не в одной точке, а на некотором множестве, являются функции, определенные на этом множестве. Эти функции могут быть непрерывными и в некоторых случаях также могут иметь частные производные в различных точках области определения.

Частные производные от этих функций называются частными производными второго порядка или вторыми частными производными.

Частные производные второго порядка разбиваются на две группы:

· вторые частные производные от по переменной;

· смешанные частные производные от по переменным и.

При последующем дифференцировании можно определить частные производные третьего порядка и т.д. Аналогичными рассуждениями определяются и записываются частные производные высших порядков.

Теорема. Если все входящие в вычисления частные производные, рассматриваемые как функции своих независимых переменных, непрерывны, то результат частного дифференцирования не зависит от последовательности дифференцирования.

Часто возникает потребность решения обратной задачи, которая состоит в определении того, является ли полным дифференциалом функции выражение вида, где непрерывные функции с непрерывными производными первого порядка.

Необходимое условие полного дифференциала можно сформулировать в виде теоремы, которую примем без доказательства.

Теорема. Для того, чтобы дифференциальное выражение являлось в области полным дифференциалом функции, определенной и дифференцируемой в этой области, необходимо, чтобы в этой области тождественно было выполнено условие для любой пары независимых переменных и.

Задача вычисления полного дифференциала второго порядка функции может быть решена следующим образом. Если выражение полного дифференциала также является дифференцируемым, то вторым полным дифференциалом (или полным дифференциалом второго порядка) можно считать выражение, полученное в результате применения операции дифференцирования к первому полному дифференциалу, т.е. . Аналитическое выражение для второго полного дифференциала имеет вид:

С учетом того, что смешанные производные не зависят от порядка дифференцирования, формулу можно сгруппировать и представить виде квадратичной формы:

Матрица квадратичной формы равна:

Пусть задана суперпозиция функций, определенной в и

Определенных в. При этом. Тогда, если и имеют непрерывные частные производные до второго порядка в точках и, то существует второй полный дифференциал сложной функции следующего вида:

Как видно, второй полный дифференциал не обладает свойством инвариантности формы. В выражение второго дифференциала сложной функции входят слагаемые вида, которые отсутствуют в формуле второго дифференциала простой функции.

Построение частных производных функции более высоких порядков можно продолжать, выполняя последовательное дифференцирование этой функции:

Где индексы принимают значения от до, т.е. производная порядка рассматривается, как частная производная первого порядка от производной порядка. Аналогично можно ввести и понятие полного дифференциала порядка функции, как полного дифференциала первого порядка от дифференциала порядка: .

В случае простой функции двух переменных формула для вычисления полного дифференциала порядка функции имеет вид

Применение оператора дифференцирования позволяет получить компактную и легко запоминающуюся форму записи для вычисления полного дифференциала порядка функции, аналогичную формуле бинома Ньютона. В двумерном случае она имеет вид.

Линеаризация функции. Касательная плоскость и нормаль к поверхности.

Производные и дифференциалы высших порядков.

1. Частные производные ФНП *)

Рассмотрим функцию и = f (P), РÎDÌR n или, что то же самое,

и = f (х 1 , х 2 , ..., х п ).

Зафиксируем значения переменных х 2 , ..., х п , а переменной х 1 дадим приращение Dх 1 . Тогда функция и получит приращение , определяемое равенством

= f (х 1 +Dх 1 , х 2 , ..., х п ) – f (х 1 , х 2 , ..., х п ).

Это приращение называют частным приращением функции и по переменной х 1 .

Определение 7.1. Частной производной функции и = f (х 1 , х 2 , ..., х п ) по переменной х 1 называется предел отношения частного приращения функции к приращению аргумента Dх 1 при Dх 1 ® 0 (если этот предел существует).

Обозначается частная производная по х 1 символами

Таким образом, по определению

Аналогично определяются частные производные по остальным переменным х 2 , ..., х п . Из определения видно, что частная производная функции по переменной х i – это обычная производная функции одной переменной х i , когда остальные переменные считаются константами. Поэтому все ранее изученные правила и формулы дифференцирования могут быть использованы для отыскания производной функции нескольких переменных.

Например, для функции u = x 3 + 3xy z 2 имеем

Таким образом, если функция нескольких переменных задана явно, то вопросы существования и отыскания ее частных производных сводятся к соответствующим вопросам относительно функции одной переменной – той, по которой необходимо определить производную.

Рассмотрим неявно заданную функцию. Пусть уравнение F(x , y ) = 0 определяет неявную функцию одной переменной х . Справедлива

Теорема 7.1.

Пусть F(x 0 , y 0) = 0 и функции F(x , y ), F¢ х (x , y ), F¢ у (x , y ) непрерывны в некоторой окрестности точки (х 0 , у 0), причем F¢ у (x 0 , y 0) ¹ 0. Тогда функция у , заданная неявно уравнением F(x , y ) = 0, имеет в точке (x 0 , y 0) производную, которая равна

.

Если условия теоремы выполняются в любой точке области DÌ R 2 , то в каждой точке этой области .

Например, для функции х 3 –2у 4 + ух + 1 = 0 находим

Пусть теперь уравнение F(x , y , z ) = 0 определяет неявную функцию двух переменных. Найдем и . Так как вычисление производной по х производится при фиксированном (постоянном) у , то в этих условиях равенство F(x , y =const, z ) = 0 определяет z как функцию одной переменной х и согласно теореме 7.1 получим

.

Аналогично .

Таким образом, для функции двух переменных, заданной неявно уравнением , частные производные находят по формулам: ,

Читайте также: