Определение молекулярного веса газообразных веществ. Основные положения МКТ. Масса и размер молекул. Количество вещества. Молекулярная физика Какова молекулярная масса

Молекулярная масса - одно из основных понятий в современной химии. Ее ввод стал возможным после научного обоснования утверждения Авогадро о том, что многие вещества состоят из мельчайших частиц - молекул, каждая из которых, в свою очередь, состоит из атомов. Этим суждением наука во многом обязана итальянскому химику Амадео Авогадро, который научно обосновал молекулярное строение веществ и подарил химии многие важнейшие понятия и законы.

Единицы масс элементов

Первоначально за базовую единицу атомной и молекулярной массы брали атом водорода как наиболее легкого из элементов во Вселенной. Но атомные массы в большинстве своем вычислялись но основе их кислородных соединений, поэтому было принято решение выбрать новый эталон для определения атомных масс. Атомную массу кислорода приняли равной 15, атомную массу самого легкого вещества на Земле, водорода, - 1. В 1961 году кислородная система определения веса была общепринятой, но создавала определенные неудобства.

В 1961 году была принята новая шкала относительных атомных масс, эталоном для которой стал изотоп углерода 12 С. Атомная единица массы (сокращенно а.е.м.) составляет 1/12 часть массы этого эталона. В настоящее время атомной массой называют массу атома, которая должна быть выражена в а.е.м.

Масса молекул

Масса молекула любого вещества равна сумме масс всех атомов, образующих данную молекулу. Самая легкая молекулярная масса газа у водорода, его соединение пишется как Н 2 и имеет значение, приближенное к двум. Молекула воды состоит из атома кислорода и двух атомов водорода. Значит, ее молекулярная масса равна 15,994 + 2*1.0079=18.0152 а.е.м. Самые большие молекулярные массы имеют сложные органические соединения - белки и аминокислоты. Молекулярная масса структурной единицы белка колеблется от 600 до 10 6 и выше, в зависимости от количества пептидных цепей в этой макромолекулярной структуре.

Моль

Одновременно со стандартными единицами массы и объема в химии используется совершенно особая системная единица - моль.

Моль - это количество вещества, которое содержит столько структурных единиц (ионов, атомов, молекул, электронов), столько содержится в 12 граммах изотопа 12 С.

При применении меры количества вещества необходимо указывать, какие именно структурные единицы имеются в виду. Как следует из понятия «моль», в каждом отдельном случае следует точно указывать, о каких структурных единицах идет речь - например, моль ионов Н + , моль молекул Н 2 и прочее.

Молярная и молекулярная масса

Масса количества вещества в 1 моль измеряется в г/моль и называется молярной массой. Отношение между молекулярной и молярной массой можно записать в виде уравнения

ν = k × m/M, где к - коэффициент пропорциональности.

Нетрудно сказать, что для любых соотношений коэффициент пропорциональности будет равен единице. Действительно, изотоп углерода имеет относительную молекулярную массу 12 а.е.м, а, согласно определению, молярная масса этого вещества равна 12 г/моль. Отношение молекулярной массы к молярной равно 1. Отсюда можно сделать вывод, что молярная и молекулярная масса имеют одинаковые числовые значения.

Объемы газов

Как известно, все окружающие нас вещества могут пребывать в твердом, жидком или газообразном агрегатном состоянии. Для твердых тел наиболее распространенной базовой мерой является масса, для твердых и жидких - объем. Это связано с тем, что твердые тела сохраняют свою форму и конечные размеры, Жидкие и газообразные вещества конечных размеров не имеют. Особенность любого газа состоит в том, что между его структурными единицами - молекулами, атомами, ионами - расстояние во много раз больше, чем такие же расстояния в жидкостях или твердых телах. Например, один моль воды в нормальных условиях занимает объем 18 мл - приблизительно столько же вмещается в одну столовую ложку. Объем одного моля мелкокристаллической поваренной соли - 58,5 мл, а объем 1 моля сахара больше моля воды в 20 раз. Для газов места требуется еще больше. Один моль азота при нормальных условиях занимает объем, в 1240 раз больший, чем один моль воды.

Таким образом, объемы газообразных веществ существенно отличаются от объемов жидких и твердых. Это обусловлено разностью растояний между молекулами веществ в различных агрегатных состояниях.

Нормальные условия

Состояние любого газа сильно зависит от температуры и давления. Например, азот при температуре в 20 °С занимает объем в 24 литра, а при 100 °С при том же самом давлении - 30,6 литров. Химики учли такую зависимость, поэтому было принято решение сводить все операции и измерения с газообразными веществами к нормальным условиям. Во всем мире параметры нормальных условий одинаковы. Для газообразных химических веществ это:

  • Температура в 0°С.
  • Давление в 101,3 кПа.

Для нормальных условий принято специальное сокращение - н.у. Иногда в задачах это обозначение не пишется, тогда следует внимательно перечитать условия задачи и привести заданные параметры газа к нормальным условиям.

Расчет объема 1 моля газа

В качестве примера несложно выполнить расчет одного моля любого газа, например азота. Для этого сначала нужно найти значение его относительной молекулярной массы:

М r (N 2)= 2×14=28.

Поскольку относительная молекулярная масса вещества численно равна молярной, то M(N 2)=28 г/ моль.

Опытным путем выяснено, что при нормальных условиях плотность азота равна 1,25 г/литр.

Подставим это значение в стандартную формулу, известную со школьного курса физики, где:

  • V — объем газа;
  • m — масса газа;
  • ρ — плотность газа.

Получим, что молярный объем азота при нормальных условиях

V(N 2)= 25г/моль: 1,25 г/ литр =22,4 л/ моль.

Получается, что один моль азота занимает 22,4 литра.

Если выполнить такую операцию со всеми существующими газовыми веществам, можно прийти к удивительному выводу: объем любого газа при нормальных условиях равен 22,4 литра. Вне зависимости от того, о каком газе идет речь, какова его структура и физико-химические характеристики, один моль этого газа будет занимать объем 22,4 литра.

Молярный объем газа - одна из важнейших констант в химии. Эта постоянная позволяет решить многие химические задачи, связанные с измерением свойств газов при нормальных условиях.

Итоги

Молекулярная масса газообразных веществ важна для определения количества вещества. А если исследователь знает количество вещества того или иного газа, он может определить массу или объем такого газа. Для одной и той же порции газообразного вещества одновременно выполняются условия:

ν = m/ M ν= V/ V m.

Если убрать постоянную ν, можно уравнять эти два выражения:

Так можно вычислить массу одной порции вещества и его объем, а также становится известной молекулярная масса исследуемого вещества. Применяя эту формулу, можно легко вычислить соотношение объем-масса. При приведении данной формулы к виду M= m V m /V станет известна молярная масса искомого соединения. Для того чтобы вычислить это значение, достаточно узнать массу и объем исследуемого газа.

Следует помнить, что строгое соответствие реальной молекулярной массы вещества к той, что найдена по формуле, невозможно. Любой газ содержит массу примесей и добавок, которые вносят определенные изменения в его структуру и влияют на определение его массы. Но эти колебания вносят изменения в третью или четвертую цифру после запятой в найденном результате. Поэтому для школьных задач и экспериментов найденные результаты вполне правдоподобны.

МОЛЕКУЛЯРНЫЙ ВЕС есть относительный вес молекулы вещества. Кроме возможности находиться в трех различных фазах (см. Аггрвгатное состояние) вещества обладают способностью распределяться одно в другом, образуя так наз. растворы. Согласно вант Гоффу (van"t Hoff) молекулы растворенного вещества при достаточном разведении раствора ведут себя подобно молекулам разреженных газов, т. е. вполне независимо друг от друга и действительно для разбавленных растворов газовые законы оказываются вполне справедливыми. В сжатых газах и еще более в жидкостях проявляются в значительной степени силы сцепления между молекулами, вызывая отступления от идеальных газовых законов и приводя к образованию сложных «полимеризованных» молекул. В твердых телах эти силы сцепления сказываются,наиболее резко, отдельные простейшие молекулы уже не различимы как отдельные индивидуумы, и весь кристалл твердого тела можно рассматривать как целую огромную молекулу. Т.о., говоря о М. в. какого-либо вещества, необходимо иметь в виду то состояние, в котором оно находится. Так как газовое состояние, а тем самым и растворенное, является наиболее изученным как теоретически, так и экспериментально, то наиболее разработанными оказываются методы определения М. в. газообразных (или парообразных) и растворенных веществ. Основное уравнение газового состояния есть уравнение Клапейрона pv=nRT(\), где р- давление, v -объем газа, п -число грамм молекул, R -газовая постоянная, Т -абсолютная t°. Заменяя п через выражение п - -- (2), где G -вес данного объема газа, а М -вес отдельной молекулы, мы получаем ур-ние pv = jjRT (3), на основании к-рого чисто экспериментальным путем, измеряя р, v, О и Т, мы можем определить относительный М. в. вещества. Принято М. в. относить к весу атома водорода, что позволяет выразить М. в. как сумму атомных весов элементов, входящих в молекулу. Напишем уравнение (3) для данного газа {х) и для водорода, взятых в равных объемах, при одинаковой t° и давлении: pv = - м х - RT и pv= = ~RT. Согласно закону Авогадро в равных объемах газов при одинаковых условиях находится равное число молекул, следовательно: |^=§|. Отсюда М Х = ^М Н, Отношение - - весов двух равных объемов газа, из к-рых один принят за единицу, есть плотность газа, в данном случае по водороду-Dff. Т. к. молекулы водорода, а также большинства элементарных газов заключают по 2 атома, то M ff = 2, откуда М х = 2 D# <4). В случае, если известна плотность дан- ного газа по отношению к воздуху, то, т. к. воздух в 14,37 раз тяжелее водорода, уравнение (4) принимает вид М х - 2.14,37 Ь воздуяа ~ =28,74 D в03духа (5). Так. обр. экспериментальное определение М. в. газообразных или парообразных веществ сводится к определению пло но ти данного газа. Существует несколько различных методов определения плотностей газов (п ров), основанных на различных принципах. Так, метод Д ю-м a (Dumas) состоит в определении веса известного объема газа. Сначала взвешивается баллон (с оттянутой трубкой), наполненный воздухом, затем в него помещают некоторое количество вещества и погружают в баню с t° выше t° кипения вещества, держа до тех пор, пока не прекратится выделение пара. Баллон запаивают и одновременно отмечают барометрическое давление= =упругости пара (Р) и температуру (t°). Зная объем баллона, мы знаем вес содержащегося в нем воздуха, откуда можно высчитать вес пустого баллона. Зная же вес пустого баллона и вес его с паром, определяем вес пара вещества в данном объеме при данных условиях. Относя затем этот вес к весу равного объема воздуха или водорода при тех же условиях, узнаем плотность газа (вес 1 с„% 8 воздуха=0,001293 г, водорода- 0,0000899 г при 0° и давлении 760 мм). Приведение веса 1 см 3 газа к условиям опыта производится по формуле G = -ц^щ^щ » г Д е G - искомый вес 1 ом 3 газа (в данном случае воздуха или водорода), G 0 -вес их при нормальных условиях, а -коеф. расширения газов, t°-температура опыта.-М е т о д Гофмана (Hofmann) основан на обратном принципе и заключается в следующем: отвешенное количество вещества в запаянной ампуле помещается в пустоту над ртутью барометрической трубки (длина к-рой более 760 мм). При нагревании снаружи ампула лопается, вещество испаряется под уменьшенным давлением и объем полученного пара непосредственно отсчитывается по шкале барометрической трубки (рис. 2). Наиболее широкое применение однако имеет метод В. М е й е р a (Meyer). Он заключается в следующем: небольшое отвешенное количество-вещества испаряют в трубке, наполненной воздухом, собирают вытесненный воздух и измеряют его объем. Трубка, в к-рую вводят вещество, окружается муфтой, наполненной какой-либо жидкостью, t° кипения к-рой по крайней мере на 30° выше t° кипения исследуемого вещества. В верхней своей части трубка имеет ответвление, соединяющее ее с приб ром для измерения объема вытесненного воздуха (рис. 1). Верхний конец трубки снабжен приспособлением, позволяющим в нужный момент вводить испытуемое вещество. Сначала кипятят жидкость в муфте до тех пор, пока не прекратится выделение воздуха и затем вводят вещество. которое быстро испаряется и вытесняет нек-рое количество воздуха, переходящего в эвдиометр. Объем его равен объему пара, образовавшегося в трубке при испарении взвешенного вещества, независимо от его собственной t°. Метод этот, как и метод Гофмана, требует очень мало вещества и при- ■605 меним при очень высоких t°. В этом случае стеклянная аппаратура заменяется стойкими сортами фарфоровой, выдерживающей t° до 1 700°. В случае, если вещество реагирует с кислородом воздуха, прибор наполняется каким-нибудь индиферентным газом (азотом, водородом, аргоном).-Определение плотностей паров и газов привело к ряду важных выводов. М. в. элементарных газов при обыкновенных условиях оказались вдвое больше, чем их атомные веса, и следовательно молекулы их заключают по два атома. При более высоких t° плотность их начинает

Рисунок 1.рис. 2.

Уменьшаться, что указывает на диссоциацию их на атомы. Плотности паров металлов отвечают одноатомным молекулам, тогда как молекулы паров фосфора, серы, мышьяка содержат более двух атомов и с повышением t° распадаются на более простые молекулы. Так, сера при 500° шестиатомна (S e), при 800° молекулы ее распадаются на £ 2 . Определение М. в. растворенных веществ основано на применении к растворам газовых законов. Как это было показано вант Гоффом, для растворенного вещества можно написать такое же уравнение состояния, как и для газа в аналогичных условиях, т. е. pv - nRT = -™ RT, где р есть осмотическое давление, т. е. то давление, которое растворенное вещество оказывает на полупроницаемую перегородку. Распространяя закон Авогадро на растворы, вант Гофф показал, что осмотическое давление, точно так же, как и газовое давление, зависит не от природы растворенного вещества, а лишь от числа растворенных молекул, и равно тому давлению, которое имело бы вещество, если бы находилось в газообразном состоянии при соответствующих условиях. Следовательно, если в одном литре растворена одна грамм-молекула вещества, то осмотическое давление будет равно 22,41 атмосферам при 0° и 22,41 (1+cct) атм. при t°. Т. о. измерение осмотического давления приводит к непосредственному определению М. в. растворенного вещества. Однако прямые измерения осмотич. давления сопряжены с большими трудностями. Наука обязана Раулю (Raoult) разработкой косвенных методов определения осмотического давления, а вместе с тем следовательно и М. в. растворенных веществ (см. Криоскопия). Между М. в. и понижением точки замерзания или повышением точки кипения раствора существует следующая зависимость, выражаемая уравнением М=С-^, где G -вес вещества, растворенного в 100 г растворителя, At -понижение точки замерзания или повышение точки кипения, а С-постоянная, найденная эмпирически Раулем, т. н. «молекулярное понижение» точки замерзания или «молекулярное повышение» точки кипения, величина, связанная со скрытой теплотой плавления или испарения уравне- нием С = щ-, где Т -абсолютная t° замерзания (или кипения) чистого растворителя, a q -скрытая теплота плавления или испарения на 1 грамм растворителя. Для воды молекулярное понижение =18,6, а молекулярное повышение = 5,15. Для измерения понижения t° замерзания или повышения t° кипения предложено большое число аппаратов, которые в принципе одинаковы. Наио"о-лее употребительны Бекмана приборы (см.). Метод криоскопический по существу возможен лишь для таких растворов, при которых происходит замерзаниетолькоодногорастворителя, но не раствора. При работах же с очень разбавленными растворами термометр Бекмана заменяется набором термоэлементов, соединенных с чувствительным гальванометром, что позволяет измерять t° до 0,00001 градуса. - Измерение М. веса растворенных веществ привело к выводам, имеющим важное теоретическое значение. Так, по отклонению от вышеприведенных формул был установлен с одной стороны факт электролитической диссоциации для электролитов, а с другой-ассоциации растворенного вещества, а также его гидратации или сольватации, т. е. соединения молекул растворенного вещества с молекулами растворителя. Следует подчеркнуть, что М. в., определяемый указанными методами, относится лишь к растворенному состоянию и на основании данных эбулиоскопии или криоскопии нельзя делать заключения о М. в. веществ в чистом состоянии. Переходя к М. в. сжатых газов и жидкостей, необходимо отметить, что до сих пор не имеется вполне совершенного и точного метода для их определения. Отступления от теории, наблюдаемые для сжатых газов и жидкостей, дают лишь косвенное указание на то, что мы имеем здесь дело с измененными молекулами. Так например согласно правилу Трутона (Trouton) отношение молекулярной теплоты испарения к абсолютной t° кипения жидкости есть величина постоянная -= = С. Величина С согласно II закону термодинамики связана с упругостью пара жидкости диференциальным ур-нием т - ВТ ~ d ~ . Т. о., измеряя скрытую теплоту испарения, мы имеем в руках метод для определения М. в. жидких веществ, т. к. А= М. I, где I -скрытая теплота испарения 1 грамма вещества. Однако правило Трутона не имеет универсального значения и справедливо лишь для небольшого числа жидкостей, для большинства же их отношение „ имеет свое особое значение, что одно уже указывает на различие М. в. в жидком и парообразном состоянии и на значительную ассоциацию жидкостей. Более определенные результаты дает метод, основанный на формуле Этвеша (Eotvos), выражающей зависимость между М. в. и поверхностным натяжением уv* 1 * = к(Т к - Т), где у - поверхностное натяжение, выражаемое в динах на см, v -молекулярный объем (=мол. вес х уд. объем), Т к -"Критическая t°, T - t° опыта, к -константа, независимая от температуры, равная в среднем 2,12. Но и в этом случае далеко не для всех жидкостей коеф. к оказывается независимым от t°. Принимается, что вещества, имеющие нормальный коеф. (не изменяющийся с t°), имеют в -жидком состоянии М. в, равный М. в. пара. Жидкости с коефшщенгом, меняющимся от t°, называются ассоциированными. М. в. их получается умножением М. в. газа на т. н. «фактор ассоциации», к-рыа вычисляется из отношения нормальной константы к к величине, получающейся на опыте. К числу ассоциированных жидкостей относятся спирты, жирные кислоты, фенол, вода (с фактором ассоциации = 4). Что касается М. в. твердых т е л, то все простейшие частицы кристалла так тесно связаны между собой, что движение одной вызывает движение всего кристалла целиком. Согласно последних воззрений на кристаллическое строение атомы в кристаллах сдерживаются теми же силами, что и атомы в отдельных газовых молекулах, т.е. силами химическими, поэтому мы можем рассматривать весь кристалл как целую молекулу и за М. в. его принимать вес этого кристалла. В настоящ. время целым рядом независимых друг от друга методов установлено абсолютное значение числа Авогадро, т.е. числа молекул в грамм-молекулярном объеме (22,41 л при 0° и 760 мм давления). Оно равно в среднем из различных определений 6,06 х10 23 . Отсюда нетрудно высчитать абсолютный вес атома водорода. Он оказывается равным 1,66х10 -84 г. Помножая это число на относительный М. в. вещества, находим абсолютный вес его молекулы. Лит.: Вознесенский С.иРебиндер П., Руководство к практическим работам по физической химии, гл. IV, М.-Л., 1928; Д ж о н с Г., Основы физической химии, гл. II, III и V, СПБ, 1911; У о к е р Д., Введение в физическую химию, гл. XIX, М., 1926: Ostwald-Luther, Hand- u. Hllfsbuch 7. Austuhrung physikochemischer Messungeri, hrsg. v. C. Drucker, Lnz.. 1927.Л. Лепинь. Н. Шилов.

Многие опыты показывают, что размер молекулы очень мал. Линейный размер молекулы или атома можно найти различными способами. Например, с помощью электронного микроскопа, получены фотографии некоторых крупных молекул, а с помощью ионного проектора (ионного микроскопа) можно не только изучить строение кристаллов, но определить расстояние между отдельными атомами в молекуле.

Используя достижения современной экспериментальной техники, удалось определить линейные размеры простых атомов и молекул, которые составляют около 10-8 см. Линейные размеры сложных атомов и молекул намного больше. Например, размер молекулы белка составляет 43*10 -8 см.

Для характеристики атомов используют представление об атомных радиусах, которые дают возможность приближённо оценить межатомные расстояния в молекулах, жидкостях или твёрдых телах, так как атомы по своим размерам не имеют чётких границ. То есть атомный радиус – это сфера, в которой заключена основная часть электронной плотности атома (не менее 90…95%).

Размер молекулы настолько мал, что представить его можно только с помощью сравнений. Например, молекула воды во столько раз меньше крупного яблока, во сколько раз яблоко меньше земного шара.

Моль вещества

Массы отдельных молекул и атомов очень малы, поэтому в расчётах удобнее использовать не абсолютные значения масс, а относительные.

Относительная молекулярная масса (или относительная атомная масса ) вещества М r – это отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода.

М r = (m 0) : (m 0C / 12)

где m 0 – масса молекулы (или атома) данного вещества, m 0C – масса атома углерода.

Относительная молекулярная (или атомная) масса вещества показывает, во сколько раз масса молекулы вещества больше 1/12 массы изотопа углерода С 12 . Относительная молекулярная (атомная) масса выражается в атомных единицах массы.

Атомная единица массы – это 1/12 массы изотопа углерода С 12 . Точные измерения показали, что атомная единица массы составляет 1,660*10 -27 кг, то есть

1 а.е.м. = 1,660 * 10 -27 кг

Относительная молекулярная масса вещества может быть вычислена путём сложения относительных атомных масс элементов, входящих в состав молекулы вещества. Относительная атомная масса химических элементов указана в периодической системе химических элементов Д.И. Менделеева.

В периодической системе Д.И. Менделеева для каждого элемента указана атомная масса , которая измеряется в атомных единицах массы (а.е.м.). Например, атомная масса магния равна 24,305 а.е.м., то есть магний в два раза тяжелее углерода, так как атомная масса углерода равна 12 а.е.м. (это следует из того, что 1 а.е.м. = 1/12 массы изотопа углерода, который составляет большую часть атома углерода).

Зачем измерять массу молекул и атомов в а.е.м., если есть граммы и килограммы? Конечно, можно использовать и эти единицы измерения, но это будет очень неудобно для записи (слишком много чисел придётся использовать для того, чтобы записать массу). Чтобы найти массу элемента в килограммах, нужно атомную массу элемента умножить на 1 а.е.м. Атомная масса находится по таблице Менделеева (записана справа от буквенного обозначения элемента). Например, вес атома магния в килограммах будет:

m 0Mg = 24,305 * 1 a.e.м. = 24,305 * 1,660 * 10 -27 = 40,3463 * 10 -27 кг

Массу молекулы можно вычислить путём сложения масс элементов, которые входят в состав молекулы. Например, масса молекулы воды (Н 2 О) будет равна:

m 0Н2О = 2 * m 0H + m 0O = 2 * 1,00794 + 15,9994 = 18,0153 a.e.м. = 29,905 * 10 -27 кг

Моль равен количеству вещества системы, в которой содержится столько же молекул, сколько содержится атомов в 0,012 кг углерода С 12 . То есть, если у нас есть система с каким-либо веществом, и в этой системе столько же молекул этого вещества, сколько атомов в 0,012 кг углерода, то мы можем сказать, что в этой системе у нас 1 моль вещества .

Постоянная Авогадро

Количество вещества ν равно отношению числа молекул в данном теле к числу атомов в 0,012 кг углерода, то есть количеству молекул в 1 моле вещества.

ν = N / N A

где N – количество молекул в данном теле, N A – количество молекул в 1 моле вещества, из которого состоит тело.

N A – это постоянная Авогадро. Количество вещества измеряется в молях.

Постоянная Авогадро – это количество молекул или атомов в 1 моле вещества. Эта постоянная получила своё название в честь итальянского химика и физика Амедео Авогадро (1776 – 1856).

В 1 моле любого вещества содержится одинаковое количество частиц.

N A = 6,02 * 10 23 моль -1

Молярная масса – это масса вещества, взятого в количестве одного моля:

μ = m 0 * N A

где m 0 – масса молекулы.

Молярная масса выражается в килограммах на моль (кг/моль = кг*моль -1).

Молярная масса связана с относительной молекулярной массой соотношением:

μ = 10 -3 * M r [кг*моль -1 ]

Масса любого количества вещества m равна произведению массы одной молекулы m 0 на количество молекул:

m = m 0 N = m 0 N A ν = μν

Количество вещества равно отношению массы вещества к его молярной массе:

ν = m / μ

Массу одной молекулы вещества можно найти, если известны молярная масса и постоянная Авогадро:

m 0 = m / N = m / νN A = μ / N A

Более точное определение массы атомов и молекул достигается при использовании масс-спректрометра – прибора, в котором происходит разделение пучком заряженных частиц в пространстве в зависимости от их массы заряда при помощи электрических и магнитных полей.

Для примера найдём молярную массу атома магния. Как мы выяснили выше, масса атома магния равна m0Mg = 40,3463 * 10 -27 кг. Тогда молярная масса будет:

μ = m 0Mg * N A = 40,3463 * 10 -27 * 6,02 * 10 23 = 2,4288 * 10 -2 кг/моль

То есть в одном моле «помещается» 2,4288 * 10 -2 кг магния. Ну или примерно 24,28 грамм.

Как видим, молярная масса (в граммах) практически равна атомной массе, указанной для элемента в таблице Менделеева. Поэтому когда указывают атомную массу, то обычно делают так:

Атомная масса магния равна 24,305 а.е.м. (г/моль).

Состав веществ сложный, хотя образованы они крохотными частицами — атомами, молекулами, ионами. многие жидкости и газы, а также некоторые твердые тела. Из атомов и заряженных ионов состоят металлы, многие соли. Все частицы обладают массой, даже самая крохотная если выразить ее в килограммах, получает очень маленькое значение. Например, m (Н 2 О) = 30 . 10 -27 кг. Такие важнейшие характеристики вещества, как масса и размеры микрочастиц, издавна изучают физики и химики. Основы были заложены в трудах Михаила Ломоносова и Рассмотрим, как изменились с тех пор взгляды на микромир.

Представления Ломоносова о «корпускулах»

Предположение о дискретном высказывали ученые Древней Греции. Тогда же было дано название «атом» мельчайшей неделимой частице тел, «кирпичику» мироздания. Великий русский исследователь М. В. Ломоносов писал о ничтожно малой, неделимой физическими способами частице строения вещества — корпускуле. Позже в трудах других ученых она получила название «молекула».

Масса молекулы, а также ее размеры, определяются свойствами составляющих ее атомов. Долгое время ученым не удавалось заглянуть вглубь микромира, что тормозило развитие химии и физики. Ломоносов неоднократно призывал коллег изучать и в своей работе опираться на точные количественные данные — «меру и вес». Благодаря работам русского химика и физика были заложены основы учения о строении вещества, ставшие составной частью стройной атомно-молекулярной теории.

Атомы и молекулы — «кирпичики мироздания»

Даже микроскопически малые тела сложно устроены, обладают различными свойствами. Такие частицы, как атомы, образованы ядром и электронными слоями, отличаются по количеству положительных и отрицательных зарядов, радиусу, массе. Атомы и молекулы существуют в составе веществ не изолированно, они притягиваются с разной силой. Более заметно действие сил притяжения в твердых телах, слабее — в жидкостях, почти не ощущаются в газообразных веществах.

Химические реакции не сопровождаются разрушением атомов. Чаще всего происходит их перегруппировка, возникает другая молекула. Масса молекулы зависит от того, какими атомами она образована. Но при всех изменениях атомы остаются химически неделимыми. Но они могут войти в состав разных молекул. При этом атомы сохраняют свойства того элемента, к которому относятся. Молекула до своего распада на атомы сохраняет все признаки вещества.

Микрочастица строения тел — молекула. Масса молекулы

Для измерения массы макротел используются приборы, старейший из которых — весы. Результат измерения удобно получать в килограммах, ведь это основная единица международной системы физических величин (СИ). Чтобы определить массу молекулы в килограммах, надо сложить атомные массы с учетом количества частиц. Для удобства была введена специальная единица массы — атомная. Можно записать ее в виде буквенного сокращения (а.е.м.). Эта единица соответствует одной двенадцатой части массы углеродного нуклида 12 С.

Если выразить найденное значение в стандартных единицах, то получаем 1,66 . 10 -27 кг. Такими малыми показателями для массы тел оперируют, в основном, физики. В статье приведена таблица, из которой можно узнать, чему равны массы атомов некоторых химических элементов. Чтобы узнать, чему равна масса одной в килограммах, умножим на два приведенную в таблице атомную массу этого химического элемента. В результате получим значение массы молекулы, состоящей из двух атомов.

Относительная молекулярная масса

Трудно оперировать в расчетах очень маленькими величинами, это неудобно, приводит к затратам времени, к ошибкам. Что касается массы микрочастиц, то выходом из затруднительной ситуации стало применение Привычный для химиков термин состоит из двух слов — «атомная масса», его обозначение — Ar. Идентичное понятие было введено для молекулярной массы (то же самое, что масса молекулы). Формула, связывающая две величины: Mr = m(в-ва)/1/12 m(12 C).

Нередко можно услышать, что говорят «молекулярный вес». Этот устаревший термин еще употребляется по отношению к массе молекулы, но все реже. Дело в том, что вес — это другая физическая величина — сила, которая зависит от тела. Напротив, масса служит постоянной характеристикой частиц, которые участвуют в химических процессах и перемещаются с обычной скоростью.

Как определить массу молекулы

Точное определение веса молекулы проводят при помощи прибора — масс-спектрометра. Для решения задач можно использовать сведения из периодической системы. К примеру, масса молекулы кислорода равна 16 . 2 = 32. Выполним несложные расчеты и найдем значение величины Mr(H 2 O) — относительной молекулярной массы воды. По таблице Менделеева определим, что масса атома кислорода — 16, водорода — 1. Проведем несложные расчеты: M r (H 2 O) = 1 . 2 + 16 = 18, где M r — молекулярная масса, H 2 O — молекула воды, H — символ элемента водорода, О — химический знак кислорода.

Массы изотопов

Химические элементы в природе и технике существуют в виде нескольких разновидностей атомов — изотопов. Каждый из них обладает индивидуальной массой, ее величина не может иметь дробное значение. Но атомная масса химического элемента чаще всего представляет собой число с несколькими знаками после запятой. При подсчетах учитывается распространенность каждой разновидности в земной коре. Поэтому массы атомов в периодической системе не всегда являются целыми числами. Используя такие величины для расчетов, мы получаем массы молекул, которые также не являются целыми числами. В некоторых случаях допускается округление значений.

Молекулярная масса веществ немолекулярного строения

Размеры и масса молекул

На электронных микрофотографиях крупных молекул можно рассмотреть отдельные атомы, но они настолько малы, что в обычный микроскоп не видны. Линейный размер частицы любого вещества, как и масса, — это постоянная характеристика. Диаметр молекулы зависит от радиусов образующих ее атомов, их взаимного притяжения. Размеры частиц меняются с увеличением числа протонов и энергетических уровней. Атом водорода — самый маленький по размерам, его радиус составляет всего 0,5 . 10 -8 см. Атом урана в три раза больше атома водорода. Настоящие «великаны» микромира — молекулы органических веществ. Так, линейный размер одной из протеиновых частиц равен 44 . 10 -8 см.

Подведем итог: масса молекул — это сумма масс атомов, входящих в их состав. Абсолютное значение в килограммах можно получить, умножив значение молекулярной массы, найденное в таблице Менделеева, на величину 1,66 . 10 -27 кг.

Молекулы ничтожно малы по сравнению с макротелами. Например, по своим размерам молекула воды Н 2 О уступает яблоку во столько же раз, во сколько раз этот фрукт меньше нашей планеты.

На законе Авогадро основан важнейший метод определения мо­лекулярных весов газообразных веществ. Но прежде чем гово­рить об этом методе, следует напомнить, в каких единицах выра­жаются молекулярные и атомные веса.

При вычислениях атомных весов первоначально принимали за единицу вес атома водорода, как самого легкого элемента, и по отношению к нему вычисляли атомные веса других элементов. Но так как для большинства элементов атомные веса опреде­ляются из их кислородных соединений, фактически вычисле­ния производились по отношению к атомному весу кислорода, который считался равным 16. Отношение между атомными ве­сами кислорода и водорода принималось равным 16:1. Впослед­ствии более точные исследования показали, что это отношение равно 15,88: 1, или 16: 1,008. Следовательно, если считать атом­ный вес водорода равным 1, атомный вес кислорода будет 15,88. Из практических соображений было решено оставить для кисло­рода атомный вес 16, приняв для водорода атомный вес 1,008.

Таким образом, в настоящее время единицей веса атомов яв­ляется 1 / 16 часть веса атома кислорода. Эта единица получила название«кислородной един ицы». Вес атома водорода равен 1,008 кислородной единицы, вес атома серы - 32,06 кисло­родной единицы и т, д.

Атомным весом элемента называется вес его атома, выра­ женный в кислородных единицах.

Так как вес молекулы любого равен сумме весов образующих ее атомов, понятно, что молекулярные веса должны выражаться в тех же единицах, что и атомные веса. Например, вес молекулы водорода, состоящей из двух атомов, равен 2,016 кислородной единицы; вес молекулы кислорода, также состоящей из двух атомов, равен 32 кислородным еди­ницам; вес молекулы воды, содержащей два атома водорода и один атом кислорода, равен 16 + 2,016=18,016 кислородной единицы и т. д.

Молекулярным весом простого или сложного назы­ вается вес его молекулы, выраженный в кислородных единицах.

Посмотрим теперь, как определяются молекулярные веса газообразных веществ.

По закону Авогадро, равные объемы газов, взятых при одина­ковом давлении и одинаковой температуре, содержат равное число молекул. Отсюда следует, что веса равных объемов двух газов должны относиться друг к другу, как их молекулярные веса.

Возьмем например, по одному литру двух различных газов. Пусть в каждом из них содержится по N молекул. Обозначим вес литра первого газа через g, а второго через g 1 . Молекулярные веса газов обозначим соответственно через М и M 1 . Так как вес литра газа равен сумме весов находящихся в нем молекул,

g = N M и g 1 =N M 1 Разделив первое равенство на второе, получим:(1)

Отношение веса данного газа к весу того же объема дру­гого газа, взятого при той же температуре и том же давлении, называется плотностью первого газа по второму. Например, 1 л углекислого газа весит 1,98 г, а 1 л водорода при тех же условиях 0,09 г, откуда плотность углекислого газа по водороду будет 1,98:0,09 = 22.

Обозначив плотность газа буквой D, перепишем уравнение (1):

откуда

M = D M 1 (2)

Молекулярный вес газа равен его плотности по отношению к другому газу, умноженной на молекулярный вес второго газа.

Очень часто плотности различных газов определяют по отно­шению к водороду как самому легкому из всех тазов. Так как молекулярный вес самого водорода равен 2,016, то в этом слу­чае формула для расчета молекулярных весов принимает вид:

М = 2,016 D

или, если округлить молекулярный вес водорода до 2:

М = 2 D

Вычисляя, например, по этой формуле молекулярный вес угле­кислого газа, плотность которого по водороду, как указано выше, равняется 22, находим:

М = 2 22 = 44

Нередко также вычисляют молекулярный вес газа, исходя из его плотности по воздуху. Хотя воздух представляет собой смесь нескольких газов, все же мы можем говорить о среднем мо­лекулярномвесе воздуха, определяемом из плотности воздуха по водороду. Найденный таким путем молекулярный вес воздуха равен 29.

Обозначив плотность исследуемого газа по воздуху через D 1 получим следующую формулу для вычисления молекулярных весов:

М = 29 D 1

Число 29 полезно запомнить, так как его часто применяют при расчетах.

Практически определение молекулярного веса сводится к из­мерению веса и объема некоторого количества исследуемого газа и последующему вычислению его плотности, после чего молеку­лярный вес находят прямопо формуле. Плотность газа может быть вычислена по отношению к любому другому газу, молеку­лярный вес которого и вес единицы объема известны. Но так как в справочниках указываются веса газов при нормальных усло­виях, а на опыте обычно приходится измерять вес и объем иссле­дуемого газа при других условиях, то для вычисления плотности газа нужно предварительно привести измеренный объем газа к нормальным условиям (0° и 760 мм давления).

Приведение к нормальным условиям производится на основа­нии уравнения, объединяющего газовые законы Бойля-Мариотта и Геи-Люссака:


где р и υ - соответственно давление и объем газа в условиях опыта; Р 0 — нормальное давление; υ 0 - объем газа при нормаль­ных условиях; Т - абсолютная температура газа.

Определяя из этого уравнения υ 0 , получаем формулу для вычисления объема газа при 0° и 760 мм давления:

Пример расчета молекулярного веса

Из опыта найдено, что 380 мл газа при температуре 27° и давлении 800 мм рт. ст. весят 0,455 г. Определить молекулярный вес газа, если известно, что 1 л воздуха при нормальных условиях весит 1,293 г.

Приводим найденный объем газа к нормальным условиям. Получаем:


Определяем теперь вес 1 л этого газа (g) при нормальных условиях:


Читайте также: