Превращения энергии при вращательном движении. Кинетическая энергия вращающегося твердого тела. Силы внутреннего трения

Определим кинетическую энергию твёрдого тела, вращающегося вокруг неподвижной оси. Разобьем это тело на n материальных точек. Каждая точка движется с линейной скоростью υ i =ωr i , тогда кинетическая энергия точки

или

Полная кинетическая энергия вращающегося твердого тела равна сумме кинетических энергий всех его материальных точек:

(3.22)

(J - момент инерции тела относительно оси вращения)

Если траектории всех точек лежат в параллельных плоскостях (как у цилиндра, скатывающегося с наклонной плоскости, каждая точка перемещается в своей плоскости рис), это плоское движение . В соответствии с принципом Эйлера плоское движение всегда можно бесчисленным количеством способов разложить на поступательное и вращательное движение. Если шарик падает или скользит вдоль наклонной плоскости, он двигается только поступательно; когда же шарик катится – он ещё и вращается.

Если тело совершает поступательное и вращательное движения одновременно, то его полная кинетическая энергия равна

(3.23)

Из сопоставления формул кинетической энергии для поступательно­го и вращательного движений видно, что мерой инертности при враща­тельном движении служит момент инерции тела.

§ 3.6 Работа внешних сил при вращении твёрдого тела

При вращении твёрдого тела его потенциальная энергия не изменяется, поэтому элементарная работа внешних сил равна приращению кинетической энергии тела:

dA = dE или

Учитывая, что Jβ = M, ωdr = dφ, имеем α тела на конечный угол φ равна

(3.25)

При вращении твёрдого тела вокруг неподвижной оси работа внешних сил определяется действием момента этих сил относительно данной оси. Если момент сил относительно оси равен нулю, то эти силы работы не производят.

Примеры решения задач

Пример 2.1. Маховик массой m =5кг и радиусом r = 0,2 м вращается вокруг горизонтальной оси с частотой ν 0 =720 мин -1 и при торможении останавливается за t =20 с. Найти тормозящий момент и число оборотов до остановки.

Для определения тормозящего момента применим основное уравнение динамики вращательного движения

где I=mr 2 – момент инерции диска; Δω =ω - ω 0 , причём ω =0 конечная угловая скорость, ω 0 =2πν 0 - начальная. М –тормозящий момент сил, действующих на диск.

Зная все величины, можно определить тормозящий момент

Mr 2 2πν 0 = МΔt (1)

(2)

Из кинематики вращательного движения угол поворота за время вращения диска до остановки может быть определён по формуле

(3)

где β–угловое ускорение.

По условию задачи: ω =ω 0 – βΔt, так как ω=0, ω 0 = βΔt

Тогда выражение (2) может быть записано в виде:

Пример 2.2. Два маховика в виде дисков одинаковых радиусов и масс были раскручены до скорости вращения n = 480 об/мин и предоставили самим себе. Под действием сил трения валов о подшипники первый остановился через t =80 с, а второй сделал N = 240 оборотов до остановки. У какого и маховика момент сил трения валов о подшипники был больше и во сколько раз.

Момент сил терния М 1 первого маховика найдём, воспользовавшись основным уравнением динамики вращательного движения

M 1 Δt = Iω 2 - Iω 1

где Δt – время действия момента сил трения, I=mr 2 - момент инерции маховика, ω 1 = 2πν и ω 2 = 0– начальная и конечная угловые скорости маховиков

Тогда

Момент сил трения М 2 второго маховика выразим через связь между работой А сил трения и изменением его кинетической энергии ΔE к:

где Δφ = 2πN – угол поворота, N -число оборотов маховика.


Тогда, откуда

Отношение будет равно

Момент сил трения второго маховика в 1.33 раза больше.

Пример 2.3. Масса однородного сплошного диска m, массы грузов m 1 и m 2 (рис.15). Скольжения и трения нити в оси цилиндра нет. Найти ускорение грузов и отношение натяжений нити в процессе движения.

Проскальзывания нити нет, поэтому, когда m 1 и m 2 будут совершать поступательное движение, цилиндр будет совершать вращение относительно оси, проходящей через точку О. Положим для определённости, что m 2 > m 1 .

Тогда груз m 2 опускается и цилиндр вращается по часовой стрелке. Запишем уравнения движения тел, входящих в систему

Первые два уравнения записаны для тел с массами m 1 и m 2 , совершающих поступательное движение, а третье уравнение – для вращающегося цилиндра. В третьем уравнении слева стоит суммарный момент сил, действующих на цилиндр (момент силы T 1 взят со знаком минус, так как сила T 1 стремится повернуть цилиндр против часовой стрелки). Справа I - момент инерции цилиндра относительно оси О, который равен

где R - радиус цилиндра; β - угловое ускорение цилиндра.

Так как проскальзывания нити нет, то
. С учётом выражений для I и β получим:

Складывая уравнения системы, приходим к уравнению

Отсюда находим ускорение a грузов

Из полученного уравнения видно, что натяжения нитей будут одинаковы, т.е. =1, если масса цилиндра будет гораздо меньше массы грузов.

Пример 2.4. Полый шар массой m = 0,5 кг имеет внешний радиус R = 0,08м и внутренний r = 0,06м. Шар вращается вокруг оси, проходящей через его центр. В определённый момент на шар начинает действовать сила, в результате чего угол поворота шара изменяется по закону
. Определить момент приложенной силы.

Решаем задачу, используя основное уравнение динамики вращательного движения
. Основная трудность – определить момент инерции полого шара, а угловое ускорение β находим как
. Момент инерции I полого шара равен разности моментов инерции шара радиуса R и шара радиуса r:

где ρ - плотность материала шара. Находим плотность, зная массу полого шара

Отсюда определим плотность материала шара

Для момента силы M получаем следующее выражение:

Пример 2.5. Тонкий стержень массой 300г и длиной 50см вращается с угловой скоростью 10с -1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Найдите угловую скорость, если в процессе вращения в той же плоскости стержень переместится так, что ось вращения пройдёт через конец стержня.

Используем закон сохранения момента импульса

(1)

(J i -момент инерции стержня относительно оси вращения).

Для изолированной системы тел векторная сумма моментов импульса остаётся постоянной. Вследствие того, что распределение массы стержня относительно оси вращения изменяется момент инерции стержня также изменяется в соответствии с (1):

J 0 ω 1 = J 2 ω 2 . (2)

Известно, что момент инерции стержня относительно оси, проходящей через центр масс и перпендикулярной стержню, равен

J 0 = mℓ 2 /12. (3)

По теореме Штейнера

J =J 0 +mа 2

(J-момент инерции стержня относительно произвольной оси вращения; J 0 – момент инерции относительно параллельной оси, проходящей через центр масс; а - расстояние от центра масс до выбранной оси вращения).

Найдём момент инерции относительно оси, проходящей через его конец и перпендикулярной стержню:

J 2 =J 0 +mа 2 , J 2 = mℓ 2 /12 +m(ℓ/2) 2 = mℓ 2 /3. (4)

Подставим формулы (3) и (4) в (2):

mℓ 2 ω 1 /12 = mℓ 2 ω 2 /3

ω 2 = ω 1 /4 ω 2 =10с-1/4=2,5с -1

Пример 2.6 . Человек массой m =60кг, стоящий на краю платформы массой М=120кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой ν 1 =12мин -1 , переходит к её центру. Считая платформу круглым однородным диском, а человека – точечной массой, определите, с какой частотой ν 2 будет тогда вращаться платформа.

Дано: m=60кг, М=120кг, ν 1 =12мин -1 = 0,2с -1 .

Найти: ν 1

Решение: Согласно условию задачи, платформа с человеком вращается по инерции, т.е. результирующий момент всех сил, приложенных к вращающейся системе, равен нулю. Поэтому для системы «платформа-человек» выполняется закон сохранения момента импульса

I 1 ω 1 = I 2 ω 2

где
- момент инерции системы, когда человек стоит на краю платформы (учли, что момент инерции платформы, равен(R – радиус п
латформы), момент инерции человека на краю платформы равенmR 2).

- момент инерции системы, когда человек стоит в центре платформы (учли, что момент человека, стоящего в центре платформы, равен нулю). Угловая скорость ω 1 = 2π ν 1 и ω 1 = 2π ν 2 .

Подставив записанные выражения в формулу (1), получаем

откуда искомая частота вращения

Ответ : ν 2 =24мин -1 .

Основные динамические характеристики вращательного движения - момент импульса относительно оси вращения z:

и кинетическая энергия

В общем случае, энергия при вращении с угловой скоростью находится по формуле:

, где - тензор инерции .

В термодинамике

Точно по тем же самым рассуждениям, как и в случае поступательного движения, равнораспределение подразумевает, что при тепловом равновесии средняя вращательная энергия каждой частицы одноатомного газа: (3/2)k B T . Аналогично, теорема о равнораспределении позволяет вычислить среднеквадратичную угловую скорость молекул.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Энергия вращательного движения" в других словарях:

    У этого термина существуют и другие значения, см. Энергия (значения). Энергия, Размерность … Википедия

    ДВИЖЕНИЯ - ДВИЖЕНИЯ. Содержание: Геометрия Д....................452 Кинематика Д...................456 Динамика Д....................461 Двигательные механизмы............465 Методы изучения Д. человека.........471 Патология Д. человека............. 474… … Большая медицинская энциклопедия

    Кинетическая энергия энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Более строго, кинетическая энергия есть разность между полной… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    - (франц. marées, нем. Gezeiten, англ. tides) периодические колебания уровня воды вследствие притяжения Луны и Солнца. Общие сведения. П. всего заметнее по берегам океанов. Тотчас после малой воды наибольшего отлива, уровень океана начинает… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность … Википедия

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании возмущающего… … Википедия

«Физика - 10 класс»

Почему для увеличения угловой скорости вращения фигурист вытягивается вдоль оси вращения.
Должен ли вращаться вертолёт при вращении его винта?

Заданные вопросы наводят на мысль о том, что если на тело не действуют внешние силы или действие их скомпенсировано и одна часть тела начинает вращение в одну сторону, то другая часть должна вращаться в другую сторону, подобно тому как при выбросе горючего из ракеты сама ракета движется в противоположную сторону.


Момент импульса.


Если рассмотреть вращающийся диск, то становится очевидным, что суммарный импульс диска равен нулю, так как любой частице тела соответствует частица, движущаяся с равной по модулю скоростью, но в противоположном направлении (рис. 6.9).

Но диск движется, угловая скорость вращения всех частиц одинакова. Однако ясно, что чем дальше находится частица от оси вращения, тем больше её импульс. Следовательно, для вращательного движения надо ввести ещё одну характеристику, подобную импульсу, - момент импульса.

Моментом импульса частицы, движущейся по окружности, называют произведение импульса частицы на расстояние от неё до оси вращения (рис. 6.10):

Линейная и угловая скорости связаны соотношением v = ωr, тогда

Все точки твёрдого дела движутся относительно неподвижной оси вращения с одинаковой угловой скоростью. Твёрдое тело можно представить как совокупность материальных точек.

Момент импульса твёрдого тела равен произведению момента инерции на угловую скорость вращения:

Момент импульса - векторная величина, согласно формуле (6.3) момент импульса направлен так же, как и угловая скорость.

Основное уравнение динамики вращательного движения в импульсной форме.


Угловое ускорение тела равно изменению угловой скорости, делённому на промежуток времени, в течение которого это изменение произошло: Подставим это выражение в основное уравнение динамики вращательного движения отсюда I(ω 2 - ω 1) = MΔt, или IΔω = MΔt.

Таким образом,

ΔL = MΔt. (6.4)

Изменение момента импульса равно произведению суммарного момента сил, действующих на тело или систему, на время действия этих сил.

Закон сохранения момента импульса:

Если суммарный момент сил, действующих на тело или систему тел, имеющих неподвижную ось вращения, равен нулю, то изменение момента импульса также равно нулю, т. е. момент импульса системы остаётся постоянным.

ΔL = 0, L = const .

Изменение импульса системы равно суммарному импульсу сил, действующих на систему.

Вращающийся фигурист разводит в стороны руки, тем самым увеличивает момент инерции, чтобы уменьшить угловую скорость вращения.

Закон сохранения момента импульса можно продемонстрировать с помощью следующего опыта, называемого «опыт со скамьёй Жуковского». На скамью, имеющую вертикальную ось вращения, проходящую через её центр, встаёт человек. Человек держит в руках гантели. Если скамью заставить вращаться, то человек может изменять скорость вращения, прижимая гантели к груди или опуская руки, а затем разводя их. Разводя руки, он увеличивает момент инерции, и угловая скорость вращения уменьшается (рис. 6.11, а), опуская руки, он уменьшает момент инерции, и угловая скорость вращения скамьи увеличивается (рис. 6.11, б).

Человек может также заставить вращаться скамью если пойдёт вдоль её края. При этом скамья будет вращаться в противоположном направлении, так как суммарный момент импульса должен остаться равным нулю.

На законе сохранения момента импульса основан принцип действия приборов, называемых гироскопами. Основное свойство гироскопа - это сохранение направления оси вращения, если на эту ось не действуют внешние силы. В XIX в. гироскопы использовались мореплавателями для ориентации в море.


Кинетическая энергия вращающегося твёрдого тела.


Кинетическая энергия вращающегося твёрдого тела равна сумме кинетических энергий отдельных его частиц. Разделим тело на малые элементы, каждый из которых можно считать материальной точкой. Тогда кинетическая энергия тела равна сумме кинетических энергий материальных точек, из которых оно состоит:

Угловая скорость вращения всех точек тела одинакова, следовательно,

Величина в скобках, как мы уже знаем, это момент инерции твёрдого тела. Окончательно формула для кинетической энергии твёрдого тела, имеющего неподвижную ось вращения, имеет вид

В общем случае движения твёрдого тела, когда ось вращения свободна, его кинетическая энергия равна сумме энергий поступательного и вращательного движений. Так, кинетическая энергия колеса, масса которого сосредоточена в ободе, катящегося по дороге с постоянной скоростью, равна

В таблице сопоставлены формулы механики поступательного движения материальной точки с аналогичными формулами вращательного движения твёрдого тела.


Лекция 3. Динамика твердого тела

План лекции

3.1. Момент силы.

3.2. Основные уравнения вращательного движения. Момент инерции.

3.3. Кинетическая энергия вращения.

3.4. Момент импульса. Закон сохранения момента импульса.

3.5. Аналогия между поступательным и вращательным движением.

Момент силы

Рассмотрим движение твердого тела вокруг неподвижной оси. Пусть твердое тело имеет неподвижную ось вращения ОО (рис.3.1 ) и к нему приложена произвольная сила .

Рис. 3.1

Разложим силу на две составляющие силы , сила лежит в плоскости вращения, а сила – параллельна оси вращения. Затем силу разложим на две составляющие: – действующую вдоль радиус-вектора и – перпендикулярную ему.

Не любая сила, приложенная к телу, будет вращать его. Силы и создают давление на подшипники, но не вращают его.

Сила может вывести тело из равновесия, а может – нет в зависимости от того, в каком месте радиус-вектора она приложена. Поэтому вводится понятие момента силы относительно оси. Моментом силы относительно оси вращения называется векторное произведение радиуса-вектора на силу .

Вектор направлен по оси вращения и определяется правилом векторного произведения или правилом правого винта, или правилом буравчика.

Модуль момента силы

где α – угол между векторами и .

Из рис.3.1. видно, что .

r 0 – кратчайшее расстояние от оси вращения до линии действия силы и называется плечом силы. Тогда момент силы можно записать

М = F r 0 . (3.3)

Из рис. 3.1.

где F – проекция вектора на направление, перпендикулярное вектору радиус-вектору . В этом случае момент силы равен

. (3.4)

Если на тело действует несколько сил, то результирующий момент силы равен векторной сумме моментов отдельных сил, но так как все моменты направлены вдоль оси, то их можно заменить алгебраической суммой. Момент будет считаться положительным, если он вращает тело по часовой стрелке и отрицательным, если против часовой стрелки. При равенстве нулю всех моментов сил (), тело будет находиться в равновесии.

Понятие момента силы можно продемонстрировать с помощью «капризной катушки». Катушку с нитками тянут за свободный конец нитки (рис. 3.2 ).

Рис. 3.2

В зависимости от направления силы натяжения нити катушка перекатывается в ту или иную сторону. Если тянуть под углом α , то момент силы относительно оси О (перпендикулярной к рисунку) вращает катушку против часовой стрелки и она откатывается назад. В случае натяжения под углом β вращающий момент направлен против часовой стрелки и катушка катится вперед.

Используя условие равновесия (), можно сконструировать простые механизмы, которые являются «преобразователями» силы, т.е. прикладывая меньшую силу можно поднимать и перемещать разного веса грузы. На этом принципе основаны рычаги, тачки, блоки разного рода, которые широко используются в строительстве. Для соблюдения условия равновесия в строительных подъемных кранах для компенсации момента силы, вызванного весом груза, всегда имеется система противовесов, создающая момент силы обратного знака.

3.2. Основное уравнение вращательного
движения. Момент инерции

Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси ОО (рис.3.3 ). Разобьём мысленно это тело на элементы массами Δm 1 , Δm 2 , …, Δm n . При вращении эти элементы опишут окружности радиусами r 1 , r 2 , …, r n . На каждый элемент действуют соответственно силы F 1 , F 2 , …, F n . Вращение тела вокруг оси ОО происходит под действием полного момента сил М .

М = М 1 + М 2 + … +М n (3.4)

где М 1 = F 1 r 1, М 2 = F 2 r 2, …, M n = F n r n

Согласно II закону Ньютона, каждая сила F , действующая на элемент массой Dm , вызывает ускорение данного элемента a , т.е.

F i = Dm i a i (3.5)

Подставив в (3.4) соответствующие значения, получим

Рис. 3.3

Зная связь между линейным угловым ускорением ε () и что угловое ускорение для всех элементов одинаково, формула (3.6) будет иметь вид

М = (3.7)

=I (3.8)

I – момент инерции тела относительно неподвижной оси.

Тогда мы получим

М = I ε (3.9)

Или в векторном виде

(3.10)

Это уравнение является основным уравнением динамики вращательного движения. По форме оно сходно с уравнением II закона Ньютона. Из (3.10) момент инерции равен

Таким образом, моментом инерции данного тела называется отношение момента силы к вызываемому им угловому ускорении. Из (3.11) видно, что момент инерции является мерой инертности тела по отношению к вращательному движению. Момент инерции играет ту же роль, что и масса при поступательном движении. Единица измерения в СИ [I ] = кг·м 2 . Из формулы (3.7) следует, что момент инерции характеризует распределение масс частиц тела относительно оси вращения.

Итак, момент инерции элемента массы ∆m движущегося по окружности радиусом r равен

I = r 2 Dm (3.12)

I= (3.13)

В случае непрерывного распределения масс сумму можно заменить интегралом

I= ∫ r 2 dm (3.14)

где интегрирование производится по всей массе тела.

Отсюда видно, что момент инерции тела зависит от массы и её распределения относительно оси вращения. Это можно продемонстрировать на опыте (рис.3.4 ).

Рис. 3.4

Два круглых цилиндра, один полый (например, металлический), другой сплошной (деревянный) с одинаковыми длинами, радиусами и массами начинают одновременно скатываться. Полый цилиндр, обладающий большим моментом инерции, отстанет от сплошного.

Вычислить момент инерции можно, если известна масса m и ее распределение относительно оси вращения. Наиболее простой случай – кольцо, когда все элементы массы расположены одинаково от оси вращения (рис. 3.5 ):

I = (3.15)

Рис. 3.5

Приведем выражения для моментов инерции разных симметричных тел массой m .

1. Момент инерции кольца , полого тонкостенного цилиндра относительно оси вращения совпадающей с осью симметрии.

, (3.16)

r – радиус кольца или цилиндра

2. Для сплошного цилиндра и диска момент инерции относительно оси симметрии

(3.17)

3. Момент инерции шара относительно оси, проходящей через центр

(3.18)

r – радиус шара

4. Момент инерции тонкого стержня длинной l относительно оси, перпендикулярной стержню и проходящей через его середину

(3.19)

l – длина стержня.

Если ось вращения не проходит через центр масс, то момент инерции тела относительно этой оси определяется теоремой Штейнера.

(3.20)

Согласно этой теореме, момент инерции относительно произвольной оси О’O’ ( ) равен моменту инерции относительно параллельной оси, проходящей через центр масс тела ( ) плюс произведение массы тела на квадрат расстояния а между осями (рис. 3.6 ).

Рис. 3.6

Кинетическая энергия вращения

Рассмотрим вращение абсолютно твердого тела вокруг неподвижной оси ОО с угловой скоростью ω (рис. 3.7 ). Разобьем твердое тело на n элементарных масс ∆m i . Каждый элемент массы вращается по окружности радиуса r i с линейной скоростью (). Кинетическая энергия складывается из кинетических энергий отдельных элементов.

(3.21)

Рис. 3.7

Вспомним по (3.13), что – момент инерции относительно оси ОО.

Таким образом, кинетическая энергия вращающегося тела

Е к = (3.22)

Мы рассмотрели кинетическую энергию вращения вокруг неподвижной оси. Если тело участвует в двух движениях: в поступательном и вращательном движениях, то кинетическая энергия тела складывается из кинетической энергии поступательного движения и кинетической энергии вращения.

Например, шар массой m катится; центр масс шара движется поступательно со скоростью u (рис. 3.8 ).

Рис. 3.8

Полная кинетическая энергия шара будет равна

(3.23)

3.4. Момент импульса. Закон сохранения
момента импульса

Физическая величина равная произведению момента инерции I на угловую скорость ω , называется моментом импульса (моментом количества движения) L относительно оси вращения.

– момент импульса величина векторная и по направлению совпадает с направлением угловой скорости .

Продифференцировав уравнение (3.24) по времени, получим

где, М – суммарный момент внешних сил. В изолированной системе момент внешних сил отсутствует (М =0) и

Механической энергией называют способность тела или системы тел совершать работу . Различают два вида механической энергии: кинетическая и потенциальная энергии.

Кинетическая энергия поступательного движения

Кинетической называетсяэнергия, обусловленная движением тела. Она измеряется работой, которую совершает равнодействующая сила, чтобы разогнать тело из состояния покоя до данной скорости.

Пусть тело массой m начинает двигаться под действием равнодействующей силы. Тогда элементарная работаdA равнаdA = F · dl · cos. В данном случае направление силы и перемещения совпадают. Поэтому= 0,cos = 1 иdl = · dt , где- скорость, с которой движется тело в данный момент времени. Эта сила сообщает телу ускорение
По второму закону НьютонаF = ma =
Поэтому
и полная работаА на путиl равна:
Согласно определению, W k = A , поэтому

(6)

Из формулы (6) следует, что значение кинетической энергии зависит от выбора системы отсчёта, поскольку скорости тел в различных системах отсчёта различны.

Кинетическая энергия вращательного движения

Пусть тело с моментом инерции I z вращается относительно осиz с некоторой угловой скоростью. Тогда из формулы (6), пользуясь аналогией между поступательным и вращательным движениями, получаем:

(7)

Теорема о кинетической энергии

Пусть тело массой т движется поступательно. Под действием различных сил, приложенных к нему, скорость тела изменяется от до
Тогда работаА этих сил равна

(8)

где W k 1 иW k 2 -кинетическая энергия тела в начальном и конечном состоянии. Соотношение (8) называетсятеоремой о кинетической энергии. Его формулировка:работа всех сил, действующих на тело, равна изменению его кинетической энергии. Если тело одновременно участвует в поступательном и вращательном движениях, например, катится, то его кинетическая энергия равна сумме кинетической энергии при этих движениях.

Консервативные и неконсервативные силы

Если на тело в каждой точке пространства действует какая-нибудь сила, то совокупность этих сил называют силовым полем или полем . Существует два вида полей - потенциальные и непотенциальные (или вихревые). В потенциальных полях на тела, помещённые в них, действуют силы, зависящие только от координат тел. Эти силы получили название консервативных или потенциальных . Они обладают замечательным свойством: работа консервативных сил не зависит от пути переноса тела и определяется только его начальным и конечным положением . Отсюда следует, что при движении тела по замкнутому пути (рис. 1) работа не совершается. Действительно, работа A на всём пути равна сумме работы A 1B2 , совершаемой на пути 1B2 , и работы A 2C1 на пути 2C1 , т.е. А = A 1B2 + A 2C1 . Но работа A 2C1 = –A 1C2 , так как движение происходит в противоположном направлении и A 1B2 = A 1C2 . Тогда А = A 1B2 – A 1C2 = 0, что и требовалось доказать. Равенство нулю работы по замкнутому пути можно записать в виде

(9)

Значок "  " на интеграле означает, что интегрирование производится по замкнутой кривой длиною l . Равенство (9) является математическим определением консервативных сил.

В макромире имеется всего лишь три вида потенциальных силгравитационная, упругая и электростатическая силы. К неконсервативным силам относятся силы трения, называемыедиссипативными . В этом случае направления силыивсегда противоположны. Поэтому работа этих сил по любому пути отрицательная, вследствие чего тело непрерывно теряет кинетическую энергию.

Читайте также: